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The full symmetry groups of carbon nanotori are investigated. It is shown that

that the symmetry group of a chiral (n1, n2) nanotorus is isomorphic to D2mq/n,

where m and q are the number of lattice points on the torus circumference

vector and the number of graphene hexagons in the nanotorus unit cell,

respectively, and n = gcd(n1, n2). It is also shown that the symmetry group of

zigzag and armchair (achiral) nanotori is D4m � Z2, where D2k and Zk are the

dihedral group of order 2k and the cyclic group of order k, respectively.

The irreducible representations and characters of these groups are

discussed.

1. Introduction

Carbon nanotubes, which are multi-walled structures of pure

carbon, were discovered in 1991 (Iijima, 1991). They show

remarkable mechanical properties and extensive experimental

and theoretical investigations have been carried out on them

(Endo et al., 1996; Wong et al., 1997; Yakobson et al., 1996).

Their mechanical characteristics clearly predestinate them for

advanced composites. A single-wall carbon nanotube is a

cylindrical structure with a diameter of a few nanometres; it is

periodic along its axis and can be visualized as a rolled-up

honeycomb lattice. Nanotubes are attractive subjects for study

in solid-state physics due to their potential applications in

nanotechnology. Their symmetry is important in theoretical

investigations and has been investigated by Damnjanović et al.

(1999a, 2001, 1999b, 2002); Barros et al. (2006) and Dressel-

haus et al. (1995). The high symmetry of carbon nanotubes has

facilitated the theoretical investigation of the physical

phenomena occurring in these materials. The spatial symme-

tries (translations, rotations and screw axes, mirror and glide

planes etc.) leave the nanotube invariant. The role of the

symmetry group is analogous to that of a crystallographic

space group in solid-state physics. Some important properties

of the band structure (electronic, phonon etc.) can be directly

deduced from the symmetry group.

A nanotube is a graphene sheet wrapped to form a cylinder.

A nanotorus is a nanotube whose ends are connected (see Fig.

1). The physical properties of nanotori have been studied, for

example, by Zhanga et al. (2006) and Sasaki (2002). In this

paper we study the symmetry groups of chiral and achiral

carbon nanotori and the irreducible representations of their

symmetry groups.

2. Full symmetry groups

A single carbon nanotorus may be described as a long rolled-

up graphite sheet bent around to the form of torus as shown in

Fig. 2. The vectors a1 and a2 are the unit vectors of a graphite

sheet and the angle between them is �/3. The transverse vector

C = n1a1 + n2a2, which is called the chiral vector, and the

longitudinal vector T = m1a1 + m2a2 correspond to the tube

and torus circumferences, respectively.

Let C0 and T0 be the unit vectors of C and T, respectively.

The numbers of lattice points on the chiral vector C and on the

torus circumference T are given by the greatest common

divisors n of integers n1, n2 and m of integers m1, m2,

respectively. We have nC0 ¼ C, mT0 ¼ T,

T0 ¼
n1 þ 2n2

nR
a1 �

2n1 þ n2

nR
a2; ð1Þ

jCj ¼ a0ðn
2
1 þ n2

2 þ n1n2Þ
1=2 and jT0j ¼ a0½3ðn

2
1 þ n2

2þ

n1n2Þ�
1=2=nR, where a0 = |a1| = |a2| = 2.461 Å, R = 3 if

n1 � n2 ðmod 3nÞ and R = 1 otherwise. The direction of the

chiral vector is measured by the chiral angle �, which is defined

as the angle between a1 and C. The chiral angle � can be

calculated from � ¼ arccosfð2n1 þ n2Þ=½2ðn
2
1 þ n2

2 þ n1n2Þ
1=2
�g.

As the tube cell is on a two-dimensional lattice, the rectangle

over C0 and T0 contains two-dimensional lattice cells. More-

over, if q is the number of hexagons in the unit cell of the

graphene, then q ¼ 2ðn2
1 þ n1n2 þ n2

2Þ=nR and in the elemen-

tary cell of the tube there are q=n monomers, each of them

containing n elementary honeycomb cells (see Damnjanović et

al., 1999b; Zhanga et al., 2006).

The translations of the rolled-up lattice along the torus

circumference vector become the rotations. The group of



these rotations is a cyclic group of order m, generated by T0.

Since the tubule length is much larger than its diameter [see

for example x3 of Dresselhaus et al. (1995)], all two-

dimensional lattice translations remain symmetries of the

tube. The translations of the graphene sheet along the direc-

tion of combination of translations in T0 and C inevitably yield

helical (screw-axis) symmetry, as a consequence of the

underlying hexagonal two-dimensional symmetry. Let W be

such a translation, and let W ¼ �Cþ �T0. Then since W =

w1a1 + w2a2, using equation (1) and the independence of a1

and a2 we can see that

� ¼
ð2n1 þ n2Þw1 þ ðn1 þ 2n2Þw2

2ðn2
1 þ n1n2 þ n2

2Þ
; � ¼

nRðn1w2 � n2w1Þ

2ðn2
1 þ n1n2 þ n2

2Þ

and thus W ¼ ðu=qÞCþ ðv=qÞT0, where u ¼ ½ð2n1 þ n2Þw1

þ ðn1 þ 2n2Þw2�=nR, v ¼ n1w2 � n2w1 and q ¼ ½2ðn2
1 þ

n1n2 þ n2
2Þ�=nR, which is the number of hexagons in the unit

cell of the graphene. By choosing w1 and w2 such that v = n and

W has minimum length, we have qW ¼ uCþ nT0. Thus the

order of W is mq/n.

From the sixfold rotation of the hexagon about its midpoint,

only the twofold rotation U remains a symmetry operation in a

carbon nanotorus. Rotations by any other angle do not

preserve the ring axis and therefore are not symmetry

operations of the nanotorus. This rotational axis, which is

present in both chiral and achiral nanotori, is perpendicular to

the ring axis. Mirror planes perpendicular to the graphene

sheet must either contain the ring axis or be perpendicular to

it in order to transform the nanotorus into itself. Only in

achiral nanotori are the vertical and horizontal mirror planes

present (respectively �v and �h). They contain the midpoints

of the graphene hexagons. In addition, in achiral nanotori the

vertical and horizontal planes through the midpoints between

two carbon atoms form vertical glide planes and horizontal

rotoreflection planes. The generators of the symmetry group

of chiral nanotori are the twofold rotation U and the screw

axis W. Note that Wq=n ¼ T0 [see p. 131 of Cotfas (2005), where

W ¼ gw, gb ¼ T0 and q0 ¼ q=n]. Thus the symmetry group of a

chiral nanotorus is

G ¼ hU;W j U2
¼ Wmq=n

¼ ðWUÞ
2
¼ 1i:

It is easy to check that G ffi D2mq=n, the dihedral group of

order 2mq=n. Note that by Lemma 1 of Damnjanović et al.

(1999b) we have q=n � 2 ðmod 12Þ.

Let G0 be the symmetry group of an achiral nanotorus. The

set of generators of G0 is the set of generators of G and �v.

Note that �h ¼ U�v. In the achiral case we have q ¼ 2n [see

for example Damnjanović et al. (1999b), p. 3]. So it is clear that

G0 ffi D4m � Z2, where Z2 is a cyclic group of order 2.

3. Conjugacy classes, irreducible representations and
characters

In this section we discuss the irreducible representations and

characters of the symmetry groups of chiral and achiral

nanotori. Irreducible representations and characters of dihe-

dral groups and direct products of groups are well known, but

we make a few brief comments here for completeness. Let us

recall some facts from representation theory [for details see

James & Liebeck (1993)]. Let D2p ¼ ha; b j ap ¼ b2 ¼

ðabÞ
2
¼ 1i be the dihedral group of order 2p. First we deter-

mine two-dimensional irreducible representations of D2p.

Write � ¼ expð2�i=pÞ. For each integer j with 1 � j< p=2,

define

Aj ¼

"
�j 0

0 ��j

#
; Bj ¼

"
0 1

1 0

#
: ð2Þ

It is easy to see that A
p
j ¼ B2 ¼ I and B�1

j AjBj ¼ A�1
j . Thus Aj

and Bj define a matrix representation of the group D2p. It is
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Figure 1
A nanotorus with C = 10a1 + 10a2, T0 ¼ a1 � a2, T ¼ 20T0. The side view
is shown on the left and the top view is shown on the right. Reproduced
with permission from Diudea et al. (2001).

Figure 2
The unrolled honeycomb lattice of a graphite sheet [after Barros et al.
(2006)]. Here C = 4a1 + 2a2, T0 ¼ 4a1 � 5a2 and � ¼ arccosf5=½2ð7Þ1=2

�g.

Table 1
Character table of a chiral nanotorus.

" ¼ expð2�in=mqÞ and 1 � r; j � ðmq=2nÞ � 1.

1 Wmq=2n Wr U WU

�1 1 1 1 1 1

�2 1 1 1 �1 �1

�3 1 ð�1Þmq=2n
ð�1Þr 1 �1

�4 1 ð�1Þmq=2n
ð�1Þr �1 1

�j 2 2ð�1Þj "jr þ "�jr 0 0



well known from representation theory that if q is a complex

representation of dimension 2 of a finite group G, such that the

matrices gq and hq for some elements g, h in G do not

commute, then q is irreducible. Clearly Aj and Bj do not

commute. Therefore the above representations are irre-

ducible. If i and j are distinct integers with 1 � i< p=2 and

1 � j< p=2, then �i 6¼ �j and �i 6¼ ��j, so Ai and Aj have

different eigenvalues. Therefore there is no matrix T with

Ai ¼ T�1AjT, and so the above representations are not

equivalent. Let �j be the character of the representation

defined by Aj and Bj.

Now suppose that p is even. It is a well known fact that D2p

has exactly (p/2) + 3 conjugacy classes

f1g; fap=2
g; fa; a�1

g; . . . ; faðp=2Þ�1; a�ðp=2Þþ1
g;

fa2jb j 0 � j � ðp=2Þ � 1g; fa2jþ1b j 0 � j � ðp=2Þ � 1g:

Using this fact we can find all conjugacy classes of the

symmetry groups of chiral and achiral nanotori.

Since D2p has (p/2) + 3 conjugacy classes, it has (p/2) + 3

irreducible characters. There are (p/2) � 1 characters of

degree 2, namely �1; �2; . . . ; �ðp=2Þ�1, and four linear char-

acters, �1 [the trivial character, �1ðgÞ ¼ 1 for all g], �2, �3 and

�4 where

�2ðgÞ ¼
1 if g ¼ aj for some j

�1 if g ¼ ajb for some j

�

�3ðgÞ ¼

1 if g ¼ 1

ð�1Þp=2 if g ¼ ap=2

ð�1Þj if g ¼ aj for 1 � j � ðp=2Þ � 1

1 if g ¼ a2jb for some j

�1 if g ¼ a2jþ1b for some j

8>>>>>><
>>>>>>:

�4ðgÞ ¼

1 if g ¼ 1

ð�1Þp=2 if g ¼ ap=2

ð�1Þj if g ¼ aj for 1 � j � ðp=2Þ � 1

�1 if g ¼ a2jb for some j

1 if g ¼ a2jþ1b for some j:

8>>>>>><
>>>>>>:

Now, by Lemma 1 of Damnjanović et al. (1999b), we can write

q/n = 2k, where k is an odd integer, and so mq/n = 2km, i.e.

mq/n is an even number. Therefore, by the above observations

with a = W, b = U and p = mq/n, we can find the conjugacy

classes, irreducible representations and character tables of the

symmetry group of a chiral nanotorus. The character table of

the symmetry group of a chiral nanotorus is given in

Table 1.

Now if G is a cyclic group of order n generated by g, then

the number of its conjugacy classes is n and it has n one-

dimensional irreducible representations 	wj, 0 � j � n� 1,

where 	wjðgkÞ ¼ wjk, 0 � k � n� 1 and w ¼ expð2�i=nÞ. Let

G = H � K be a decomposition of the group G. Then every

conjugate of an element (h, k) [note that we can write hk =

(h, k)] is of the form (a, b), where a is a conjugate of h and b is

a conjugate of k. Therefore the number of conjugacy classes of

G is the product of the number of conjugacy classes of H and

the number of conjugacy classes of K. It is also known that

every irreducible character of G = H�K is of the form �� �,

where � is an irreducible character of H. � is an irreducible

character of K and ð�� �Þðh; kÞ ¼ �ðhÞ�ðkÞ for all h in H and

k in K.

From the explanations above we can find the conjugacy

classes, irreducible representations and character tables of the

symmetry group of an achiral nanotorus. The character table

of the symmetry group of an achiral nanotorus is given in

Table 2.

4. Concluding remarks

A nanotube is a graphene sheet wrapped to form a cylinder. A

nanotorus is a nanotube whose ends are connected. Thus, a

nanotorus can be classified according to its chiral and trans-

lational vectors. Many physical properties of a system can be

determined by its symmetry. Since nanotubes can be viewed as

quasi-one-dimensional systems, the line-group symmetry

approach is suited to the description of the properties of

nanotubes (Damnjanović et al., 1999a). Line-group symmetry

allows two different types of quantum numbers: linear and

helical. Both types have been used in the literature (Damn-
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Table 2
Character table of an achiral nanotorus.

" ¼ expð�i=mÞ and 1 � r; j � m� 1.

1 Wm Wr U WU �v Wm�v Wr�v U�v WU�v

�1 1 1 1 1 1 1 1 1 1 1

�2 1 1 1 �1 �1 1 1 1 �1 �1

�3 1 ð�1Þm ð�1Þr 1 �1 1 ð�1Þm ð�1Þr 1 �1

�4 1 ð�1Þm ð�1Þr �1 1 1 ð�1Þm ð�1Þr �1 1

�j 2 2ð�1Þj "jr þ "�jr 0 0 2 2ð�1Þj "jr þ "�jr 0 0

�01 1 1 1 1 1 �1 �1 �1 �1 �1

�02 1 1 1 �1 �1 �1 �1 �1 1 1

�03 1 ð�1Þm ð�1Þr 1 �1 �1 �ð�1Þm �ð�1Þr �1 1

�04 1 ð�1Þm ð�1Þr �1 1 �1 �ð�1Þm �ð�1Þr 1 �1

�0j 2 2ð�1Þj "jr þ "�jr 0 0 �2 �2ð�1Þj �"jr � "�jr 0 0



janović et al., 2002; Barros et al., 2006) for carbon nanotubes.

The symmetry and electro-optical properties of nanotubes

have been studied before (Damnjanović et al., 2002; Barros et

al., 2006). The symmetry properties and the character tables of

chiral and achiral single-walled carbon nanotubes were

reported by Barros et al. (2006). In this paper we have

discussed the symmetry groups of chiral and achiral carbon

nanotori and the irreducible representations of the groups.

The structure of these groups, and hence the irreducible

representations etc., is similar to that obtained using the line-

group formalism for carbon nanotubes (Damnjanović et al.,

1999a, 2001, 1999b, 2002). This suggests that the group theory

developed here could, in principle, be obtained directly from

the line group of the nanotubes and vice versa. The connection

between the two formalisms is evidence that this group-theory

analysis is correct.
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